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Abstract
The ground-state energy of an N-polaron system, confined to a spherical
quantum dot with a neutralizing background charge, is investigated within an
all-coupling many-body path-integral variational principle, taking into account
both the Fermi statistics of the polarons and the electron–electron interaction.
The treatment of the ground-state energy is performed for both closed-shell and
open-shell systems. The average fermion density in the neutral spherical dot
is characterized by the Wigner–Seitz parameter rs. For a sufficiently large but
finite number of polarons, the dependence of the ground-state energy on rs is
very similar to that for a polaron gas in bulk. Hence, we can conclude that the
ground-state properties of a polaron gas in bulk can be qualitatively described
using a model of a finite number of polarons in a confinement potential provided
by a neutralizing background charge.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the present paper we address the problem of the ground-state energy of a polaron gas, starting
from considerations on a system of a finite number of polarons in a quantum dot.

It is well known that Feynman’s variational path integral treatment [1] of a single polaron
provides a superior analytical all-coupling theory. But the generalization of this approach to
many polarons is far from trivial, not only because of the Coulomb repulsion. A major problem
is also the treatment of the Fermi–Dirac statistics of the electrons. Even for the bipolaron, until
now, the stability study [2] was limited to two distinguishable electrons with opposite spin.

Some time ago, two of the present authors [3] contributed to a generalization of the
Lee–Low–Pines transformation [4] to the N-polaron problem, that allows one to treat the
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problem (including the statistics) in terms of solely the static structure factor of the electron
gas. The method is variational, and limited to the weak electron–phonon coupling regime.
More recently, we succeeded [5, 6] in generalizing Feynman’s variational approach to a finite
number of polarons in a quantum dot, to study the possible occurrence of bipolarons, tripolarons
and multipolarons. This method strongly relies on the path integral formalism for interacting
identical oscillators [7], to which two of the present authors contributed.

In the present paper, we exploit these ideas and techniques to treat the polaron gas, by
considering it as a charge-neutral quantum dot which grows in size, while keeping the mean
electron density constant.

2. The electron–phonon system

Consider a system of N electrons with mutual Coulomb repulsion, interacting with the
lattice vibrations. The system is confined in a sphere of a radius R with a uniform positive
background charge density nb. The density nb is set equal to the averaged electron density
n0 = N/(4π R3/3), such that the quantum dot is electroneutral. The density can then be
expressed in terms of the effective Wigner–Seitz parameter r∗

s , which is determined by the
equation

4π

3
(r∗

s a∗
B)3 = 1

n0
, (1)

with the effective Bohr radius a∗
B,

a∗
B = h̄2

mb(e2/ε∞)
. (2)

mb is the band mass, and ε∞ is the electronic (high-frequency) dielectric constant. For the
study of a polaron gas, this effective Bohr radius is a more appropriate unit of length than the
usual unit of length ap of polaron theory

ap ≡
√

h̄

mbωLO
. (3)

The total number of electrons is represented as N = ∑
σ Nσ , where Nσ is the number of

electrons with spin projection σ = ±1/2. The electron coordinates are denoted by x j,σ with
j = 1, . . . , Nσ . Introducing the generalized electron coordinate

x̄ = (
x1,− 1

2
, . . . , xN− 1

2
,− 1

2
, x1,+ 1

2
, . . . , xN+ 1

2
,+ 1

2

)
, (4)

the Hamiltonian under consideration is

H =
∑

σ=±1/2

Nσ∑
j=1

p2
j,σ

2m
+
∑

k

h̄ωka†
kak + Vb(x̄) + VC(x̄)

+
∑

σ=±1/2

Nσ∑
j=1

∑
k

(Vkakeik·x j,σ + V ∗
k a†

ke−ik·x j,σ ), (5)

where the electron–phonon interaction is described by the Fröhlich model

Vk = h̄ωLO

ik

(
4πα

V

)1/2 ( h̄

2mωLO

)1/4

with α = e2

h̄c

√
mbc2

2h̄ωLO

(
1

ε∞
− 1

ε0

)
, (6)

with ωLO the frequency of the longitudinal optical phonons which are created and annihilated
by a†

k and ak, and with the electronic and static dielectric constants ε∞ and ε0, respectively.
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The potential energy from the Coulomb repulsion is

VC(x̄) =
∑

σ,σ ′=± 1
2

Nσ∑
j=1

Nσ ′∑
l=1

e2

2ε∞
1∣∣x j,σ − xl,σ ′

∣∣ ,
( j,σ ) �=(l,σ ′)

(7)

and the interaction energy from the background is

Vb(x̄) =
∑

σ

N∑
j=1

Ub(|x| j,σ ) + Vbb, (8)

where Ub(|r|) is the electrostatic background potential of an electron with position r. In the
case of the uniform neutralizing background sphere described above, this potential energy is
readily calculated:

Ub(r) = −4πe2nb

3ε0

⎧⎪⎨
⎪⎩

3R2 − r 2

2
for r � R

R3

r
for R � r ,

(9)

where ε0 is the static dielectric constant. The ratio η between the high-frequency and low-
frequency dielectric constants

0 � η = ε∞
ε0

� 1 (10)

can be used to compare the strength of the electron–electron interaction with the strength of the
electron–phonon interaction. The constant term Vbb is the potential energy associated with the
electrostatic interaction of the background charges with each other:

Vbb = 3

5

e2 N2

ε0 R
. (11)

If one were able to calculate the partition function Z(β|{Nσ }) = Tr(e−βH ) (where
β = 1/(kBT ) with Boltzmann constant kB and temperature T ) for the given number of
electrons with spin components σ , one would find the free energy

F(β|{Nσ }) = − 1

β
ln Z(β|{Nσ }), (12)

which in the zero-temperature limit β → ∞ reduces to the ground-state energy

E0({Nσ }) = lim
β→∞ F(β|{Nσ }) (13)

of the system.
The trace over the phonon degrees of freedom can be performed in the same way as for the

single polaron [1]. The result is the trace of a path integral K (x̄, β|x̄′) (in Euclidean time) over
the electron coordinates only:

Z(β|{Nσ }) = Zph(β)Zpol(β|{Nσ }), (14)

Zpol(β|{Nσ }) =
∫

dx̄ K (x̄, β|x̄), (15)

K (x̄, β|x̄′) =
∫ x̄(β)=x̄

x̄(0)=x̄′
Dx̄(τ )e−S[x̄(τ )], (16)

S[x̄(τ )] = 1

h̄

∫ h̄β

0

(∑
σ

Nσ∑
j=1

mb

2

(
dx j,σ (τ )

dτ

)2

+ Vb(x̄(τ )) + VC(x̄(τ ))

)
dτ − 
[x̄(τ )], (17)
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where Zph(β) is the partition function of the free phonons, and Zpol(β|{Nσ }) is the electronic
contribution in which the effect of the electron–phonon interaction is described by an influence
functional 
[x̄(τ )] with a retarded effective electron–electron interaction:


[x̄(τ )] =
∑

k

|Vk|2
2h̄2

∫∫ h̄β

0
dτ dτ ′ cosh[ωLO(|τ − τ ′| − h̄β

2 )]
sinh

(
1
2βh̄ωLO

)
×

∑
σ,σ ′=± 1

2

Nσ∑
j=1

Nσ ′∑
j ′=1

eik·(x j,σ (τ )−x j ′,σ ′ (τ ′)). (18)

Performing the summation over the phonon wavevectors, this influence functional is
expressed as a functional over the retarded Coulomb interaction between the electrons


[x̄(τ )] = αωLO

4

√
2h̄ωLO

mb

∑
σ,σ ′=± 1

2

Nσ∑
j=1

Nσ ′∑
j ′=1

∫∫ h̄β

0
dτ dτ ′

cosh
[
ωLO

(|τ−τ ′|− h̄β

2

)]
sinh( 1

2 βh̄ωLO)∣∣x j,σ (τ ) − x j ′,σ ′(τ ′)
∣∣ .

However, it should be realized that the propagator K (x̄, β|x̄′) for fermions must satisfy the
antisymmetry property

K (x̄, β|x̄′) = (−1)ξ Pσ K (Pσ x̄, β|x̄′), (19)

for any permutation Pσ of the particles with spin component σ , where ξ Pσ
= 1 for even

permutations, and ξ Pσ
= −1 for odd permutations.

For the actual calculations it is useful to introduce

ρk =
∑

σ=±1/2

Nσ∑
j=1

eik·x j,σ , (20)

which is proportional to the Fourier transform of the electron density. The potential energy of
the electron–electron Coulomb repulsion and the influence functional then take the form

VC(x̄) =
∑
k �=0

4πe2

k2V
(ρkρ−k − N), (21)


[x̄(τ )] = −
∑

k

|Vk|2
2h̄2

∫∫ h̄β

0
dτ

cosh
[
ωLO

(∣∣τ − τ ′∣∣− h̄β

2

)]
sinh

(
βh̄ωLO

2

) ρk(τ )ρ−k(τ
′). (22)

3. The Jensen–Feynman inequality

At present no method is known to calculate the non-Gaussian path integral (15)–(17)
analytically. But the Jensen–Feynman variational principle [1] provides a useful approximation
technique. It yields a lower bound to the partition function, and hence an upper bound to the
free energy:

F � Ftr + 1

β
〈S − Str〉Str

, (23)

where Str is a trial action with corresponding free energy Ftr, provided that S and Str are real
quantities. The angular brackets denote a weighted average over the paths

〈(•)〉Str
=

∫
dx̄
∫ x̄(β)=x̄

x̄(0)=x̄ Dx̄(τ )(•)e−Str[x̄(τ )]∫
dx̄
∫ x̄

x̄(0)=x̄ (β) = x̄Dx̄(τ )e−Str[x̄(τ )] . (24)
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In the present paper, we use a trial action of the form

Str[x̄(τ )] =
∫ h̄β

0
dτ

[∑
σ

Nσ∑
j=1

(m

2
ẋ2

j,σ (τ ) + Ax2
j,σ (τ )

)

− B
∑
σ,σ ′

Nσ∑
j=1

Nσ ′∑
l=1

(
x j,σ (τ ) − xl,σ ′ (τ )

)2

]

− C
Nσ∑
j=1

Nσ ′∑
l=1

∫∫ h̄β

0
dτ dτ ′

cosh
(
�
(∣∣τ − τ ′∣∣− h̄β

2

))
sinh

(
βh̄�

2

) (
x j,σ (τ ) − xl,σ ′(τ ′)

)2

(25)

which is similar to the action S[x̄(τ )] under study, but with all interactions replaced by quadratic
interactions, and with variational parameters A, B, C and �. Note that 〈S − Str〉Str depends on
the partition function, the density, the pair correlation function and the dynamic two-point
correlation function of the trial system. For instance, the expectation value of ρk becomes

〈ρk〉Str
=
∑

σ

〈
Nσ∑
j=1

eik·x j,σ

〉
Str

=
∑

σ

Nσ

∫
eik·rnσ (r) dr, (26)

where nσ (r) is the normalized density of electrons with spin component σ in the trial system

nσ (r) =
〈

1

Nσ

Nσ∑
j=1

δ
(
r − x j,σ

)〉
Str

. (27)

The trial system now consists of interacting harmonic oscillators in a harmonic confining
potential. The required expectation values, including the statistics of the fermions, have been
studied before [7]. The bookkeeping to take into account the different spin components is
demanding, and the full algebra of this calculation lies beyond the scope of the present report.
Most technical details can be found in an earlier paper [6], where a similar treatment was
performed for N polarons in a harmonic confinement potential, instead of the uniform spherical
background under investigation here. The expectation value of the background potential (8) in
the trial system can now be written as

〈Vb (x̄)〉tr =
∑

σ

Nσ

∫
Ub (|r|) nσ (r) dr + Vbb, (28)

with the density nσ (r) known from previous work, as already mentioned above.

4. Discussion of results

Although most required quantities (partition function, density, two point correlation function)
could be expressed in closed form (finite series), the time integral in the influence functional
and the minimization of the ground-state energy with respect to the variational parameters have
to be performed numerically. No detailed calculations have been executed yet for the large set
of parameters which can be of interest (material constants mb, ωLO, α, η, doping parameter r∗

s ),
but preliminary results indicate that our basic hypothesis holds, i.e., with increasing number of
particles for fixed r∗

s the ground-state energy converges to the ground-state energy in bulk for a
tractable number of particles (N ∼ 50). We illustrate this with a few representative plots.

In figure 1, the ground-state energy per particle for an N-polaron system in a quantum dot
is plotted as a function of the number of polarons with fixed r∗

s for two different cases: (i) the

5



J. Phys.: Condens. Matter 19 (2007) 255206 F Brosens et al

(a)

(b)

Figure 1. Polaron ground-state energy per particle as a function of the number of fermions. The
parameters are taken (a) for ZnO with α = 0.849, η = 0.4908, r∗

s = 2, (b) for a polar medium with
α = 5, η = 0.3, r∗

s = 20. The arrows indicate the number of fermions corresponding to the closed
and half-filled shells. Insets: the total spin of an N -polaron system as a function of the number of
fermions.

case of ZnO with α = 0.849, η = 0.4908, and h̄ωLO = 73.27 meV, (ii) the case of a polar
medium with α = 5, η = 0.3. In the insets, the total spin of an N-polaron system in its ground
state is represented as a function of N .

In an N-polaron quantum dot in ZnO for r∗
s = 2 (corresponding to a density n0 ≈

4.34 × 1019 cm−3), the shell filling obeys Hund’s rule (see the inset to figure 1(a)). This shell
filling is manifested in the ground-state energy, where the pronounced minima correspond to
the closed shells (N = 2, 8, 20, 40, . . .), and weakly expressed minima correspond to the half-
filled shells (N = 5, 14, 30, 56, . . .). In the case of a medium with α = 5, η = 0.3, for r∗

s = 20
(corresponding to a density n0 ≈ 1.14 × 1018 cm−3), an N-polaron system in its ground state
has the maximal possible spin (see the inset to figure 1(b)). As a result, the ground-state energy
as a function of N in figure 1 exhibits kinks for N corresponding to the closed shells of a
spin-polarized N-polaron system with parallel spins (N = 1, 4, 10, 20, 35, . . .).

6
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(a) (b)

Figure 2. Ground-state energy per particle (and in the insets the radius of the background sphere)
as a function of the effective Wigner–Seitz parameter r∗

s for different numbers of fermions. The
dash–dotted line represents the results of the generalized Lee–Low–Pines transformation of [3].

In figure 2, the polaron ground-state energy per particle E0/N is plotted as a function of the
effective Wigner–Seitz parameter r∗

s for several numbers of fermions: N = 1, 8, 20 and 40 for
ZnO (figure 2(a)), and N = 1, 10, 20 and 35 for a medium with α = 5, η = 0.3 (figure 2(b)).
The insets show the corresponding radius of the background sphere as a function of r∗

s . Notice
that, for all considered values of r∗

s , the ground-state energy per particle only slightly varies
with N for N � 10. We can thus assume that, for these numbers of particles, an N-polaron
system in a neutral spherical quantum dot reveals properties close to those for a polaron gas
in bulk. The dot–dot–dashed lines show the single-polaron ground-state energy for a polaron
as calculated with Feynman’s path-integral variational method [1]. It appears that E0/N as a
function of r∗

s tends to a finite (bulk) value of the ground-state energy at large r∗
s . For N = 1,

this value analytically coincides with that obtained within the Feynman method. For larger N ,
the bulk value of the ground-state energy per particle is higher than the Feynman one-polaron
ground-state energy, as seen from the graph for α = 5. This difference is due to the fact that
the trial system for N �= 1, in the limit r∗

s → ∞, differs from the Feynman model (N times
repeated) for a single polaron. The dash–dotted line represents the results of the generalized
canonical transformation for polarons of [3].

5. Conclusions

We have generalized Feynman’s treatment of a single polaron to an N-polaron system, taking
into account fermion statistics. For a quantum dot with a spherical neutralizing background,
the ground-state energy of the N-polaron system tends to the ground-state energy of a polaron

7
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gas in bulk, if we let the radius of the sphere increase while keeping the density fixed. The
results for a relatively low number (N � 50) of polarons converge to the bulk limit. At present
we are performing comparisons with other approximations, in particular with those in [8, 9].
Preliminary results confirm the validity of our approach.
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